第3部 対象事業に係る環境影響の総合的な評価

第1章 総合評価

第2部において環境影響評価を行った各環境要素については，各種の環境保全措置の実施により，環境への影響を低減するよう努めることとした。

また，これらの環境保全措置の実施により，次に示すような関連する環境要素への改善 が期待できる。

| 環境保全措置の内容 | 改善される環境影響の内容 |
| :--- | :--- |, | •二酸化窒素及び浮遊粒子状物質濃度，騒音，振動 |
| :--- |
| の低減 |
| •動物，生態系，人と自然との触れ合いの活動の場 |
| への影響低減 |

以上により，大気質，悪臭，騒音，振動，水質•底質，地下水，地盤，安全性，廃棄物等，植物，動物，生態系，水循環，人と自然との触れ合いの活動の場及び温室効果ガス等 の環境要素について，総合的にみた場合においても，本事業の実施による影響は，回避又 は低減が図られているものと判断する。

第2章 調査，予測，環境保全措置及び評価の概要

本事業の実施により，影響を受けると想定された各環境要素についての調査，予測，環境の保全のための措置及び評価の概要は，次に示すとおりである。

環境要素	調 査	予 測
大 気 質	【水面の埋立てによる大気汚染】 既存資料調査によると，令和 2 年度の白水小学校における観測の結果，主風向は北北西，年間平均風速は $2.1 \mathrm{~m} / \mathrm{s}$ である。 平成 28 ～令和 2 年度の一番畑保育園（東海市）における測定の結果，降下ばいじん量の年平均値は，2．7～ 3． $4 \mathrm{t} / \mathrm{km}^{2}$ •月の範囲にあり，大きな増減はなく $3 \mathrm{t} / \mathrm{km}^{2}$ •月前後で推移して いる。	【水面の埋立てによる大気汚染】 施工区域の境界上における水面の埋立 てによる降下ばいじん量の最高濃度（季節別）は $0.9 \sim 1.7 \mathrm{t} / \mathrm{km}^{2}$ •月と予測される。 また，ヘドロに含まれる有害物質が粉 じんとして飛散し，周辺環境に影響を及 ぼすことは無いと予測される。

環境の保全のための措置	評 価
【水面の埋立てによる大気污染】 本事業の実施にあたっては，以下に示す環境の保全のための措置を講ずる。 －工事現場内では，工事の状況を勘案し て散水を実施する。 －工事用運搬車両のタイヤに付着した泥•土の飛散を防止するために，工事関係車両の出入口付近に水洗いを行ら洗車設備を設置する。 －工事関係車両の出入口付近に適宜清掃員を配置し，清掃に努める。 －土砂の運搬作業では，必要に応じて，運搬車両に飛散防止シート掛け等を行 う。 －ボックス工事等において，ヘドロ層を含む底質が露出する期間が生じるが，露出する時間をできる限り短くなるよ ら工程計画を検討する。 －工事の実施にあたっては，施工業者間 で連絡調整を行うとともに，情報共有 を緊密に行えるような体制づくりに努 める。 －周辺の住民等に対し，事前に工事内容 を丁寧に説明するとともに，苦情等が発生した場合には適切に対応するなど の措置を講ずる。	【水面の埋立てによる大気汚染】 予測結果によると，施工区域の境界上にお ける水面の埋立てによる降下ばいじん量の最高濃度の予測結果（季節別）は $0.9 \sim 1.7 \mathrm{t} / \mathrm{km}^{2}$ •月である。 技術手法で示されている「住民の生活環境 を保全することが特に必要な地域の参考値」 との対比を行った結果，降下ばいじん量は，参考値 $10 \mathrm{t} / \mathrm{km}^{2}$ •月を下回る。 本事業の実施においては，工事現場内では，工事の状況を勘案して散水を実施する等の環境の保全のための措置を講ずるとともに，へ ドロ層を含む底質が露出する期間をできる限 り短くなるよう工程計画を検討することによ り，周辺の環境に及ぼす影響の低減に努める。

環境要素	調 查	予 測
大 気 質	【建設機械の稼働による大気汚染】 既存資料調查によると，令和 2 年度の白水小学校における観測の結果，主風向は北北西，年間平均風速は $2.1 \mathrm{~m} / \mathrm{s}$ ，大気安定度の最多出現頻度 は中立（D）である。 平成 28 ～令和 2 年度の白水小学校 における測定の結果，窒素酸化物濃度は，緩やかな減少傾向を示してい る。令和2年度における二酸化窒素濃度の測定結果は，環境基準及び名古屋市の大気汚染に係る環境目標値 ともに達成している。 平成 28 ～令和 2 年度の白水小学校 における測定の結果，浮遊粒子状物質濃度は，緩やかな減少傾向を示し ている。令和2年度における測定結果は，環境基準及び名古屋市の大気汚染に係る環境目標値ともに達成し ている。	【建設機械の稼働による大気污染】 ア．二酸化窒素 建設機械の稼働による窒素酸化物の年間排出量が最大となる時期の年平均値は 0.031 ppm ，年平均値の寄与率は 54.7% ，日平均値の年間 98% 値は 0.055 ppm と予測される。 住居が存在する大江川上流部で煙源が集中する時期の年平均値は 0.033 ppm ，年平均値の寄与率は 57.8% ，日平均値の年間 98% 値は 0.058 ppm と予測される。 ィ．浮遊粒子状物質 建設機械の稼働による浮遊粒子状物質 の年間排出量が最大となる時期の年平均値は $0.0174 \mathrm{mg} / \mathrm{m}^{3}$ ，年平均値の寄与率は 13.6% ，日平均値の 2% 除外値は 0.043 mg ／ m^{3} と予測される。 住居が存在する大江川上流部で煙源が集中する時期の年平均値は $0.0210 \mathrm{mg} /$ m^{3} ，年平均値の寄与率は 28.7% ，日平均値の 2% 除外値は $0.050 \mathrm{mg} / \mathrm{m}^{3}$ と予測され る。 注）数値は，施工区域外側での最高濃度を示す。

環境の保全のための措置
【建設機械の稼働による大気汚染】
本事業の実施にあたつては，以下に示す

－建設機械の機種について，原則として排出ガス対策型を使用する。
－運搬車両のアイドリングについて，作業時及びやむを得ない場合以外は，停止する。
－建設機械の効率的な運用に努めるとと もに，十分な点検•整備により，性能の維持に努める。
－建設機械（ディーゼルエンジン仕様）に使用する燃料は，日本産業規格（JIS） に適合するものを使用する。
－大気汚染物質排出量の多い建設機械が同時に多数稼働することのないような工事計画に努める。
－工事の実施にあたつては，施工業者間 で連絡調整を行うとともに，情報共有 を緊密に行えるような体制づくりに努 める。
－周辺の住民等に対し，事前に工事内容 を丁寧に説明するとともに，苦情等が発生した場合には適切に対応するなど の措置を講ずる。

【建設機械の稼働による大気汚染】
予測結果によると，施工区域の境界上にお ける建設機械の稼働による二酸化窒素の年平均値の寄与率は 54.7% ，浮遊粒子状物質の寄与率は 13.6% である。また，住居が存在する大江川上流部で煙源が集中する時期の建設機械の稼働による二酸化窒素の年平均値の寄与率は 57.8% ，浮遊粒子状物質の寄与率は 28．7\％である。

大気汚染に係る環境基準及び名古屋市の大気汚染に係る環境目標値（市民の健康の保護 に係る目標値）との対比を行った結果，二酸化窒素濃度の日平均値の年間 98% 値は，環境基準の値を下回るものの，環境目標値を上回る。浮遊粒子状物質濃度の日平均値の 2% 除外値 は，環境基準の値及び環境目標値（市民の健康 の保護に係る目標値）を下回るが，年平均値 は，環境目標値（快適な生活環境の確保に係る目標値）を上回る。なお，予測場所には，大気汚染に係る環境基準が適用されない工業専用地域が含まれるが，参考までに環境基準と比較すると，二酸化窒素及び浮遊粒子状物質の環境基準の値を下回る。

本事業の実施においては，二酸化窒素濃度 について環境目標値（市民の健康の保護に係 る目標値）を上回り，また，浮遊粒子状物質濃度について環境目標値（快適な生活環境の確保に係る目標値）を上回ることから，建設機械 の機種について，原則として排出ガス対策型 を使用する等の環境の保全のための措置を講 ずることにより，周辺の環境に及ぼす影響の さらなる低減に努める。

環境要素	調 査	予 測
大 気 質	【工事関係車両の走行による大気活染】 既存資料調查は，【建設機械の稼働 による大気汚染】参照。 現地調査によると，自動車交通量及び大型車混入率は，№． 2 地点が最も多い結果であった。	【工事関係車両の走行による大気汚染】 ア．二酸化窒素 年平均値の寄与率について，工事関係車両の走行は $0.18 ~ 0.42 \%$ ，建設機械の稼働による影響との重合は 20.56 ～ 22.68% と予測される。日平均値の年間 98% 値について，工事関係車両の走行は $0.032 ~ 0.033 \mathrm{ppm}$ ，建設機械の稼働による影響との重合は $0.036 \sim 0.038 \mathrm{ppm}$ と予測 される。 イ．浮遊粒子状物質 年平均値の寄与率について，工事関係車両の走行は $0.01 ~ 0.02 \%$ ，建設機械の稼働による影響との重合は $1.80 ~ 2.87 \%$ と予測される。日平均値の 2% 除外値につ いては，工事関係車両の走行は $0.037 \mathrm{mg} /$ m^{3} ，建設機械の稼働による影響との重合 は $0.039 \mathrm{mg} / \mathrm{m}^{3}$ と予測される。

【工事関係車両の走行による大気汚染】
－工事関係車両の運転者に対し，適正な走行，アイドリングストップの遵守を指導，徹底する。
－資材等の搬出入については，積載量に応じた適正な車種の選定による運搬 の効率化を推進することにより，さら に工事関係車両の走行台数を減らす よう努める。
－工事関係の通勤者には，公共交通機関 の利用や自動車の相乗りを指導し，通勤に使用する車両の走行台数を減ら すよう努める。
－工事関係車両については，十分な点検•整備を行い，急発進や急加速を避 けるなど，適正な走行に努める。
－工事関係車両の排出ガスについては，
「貨物自動車等の車種規制非適合車 の使用抑制等に関する要綱」（愛知県） に基づく対応を図る。
－工事関係車兩（ディーゼルエンジン仕様）に使用する燃料は，日本産業規格
（JIS）に適合するものを使用する。
－工事の実施にあたつては，施工業者間 で連絡調整を行うとともに，情報共有 を緊密に行えるような体制づくりに努める。
－周辺の住民等に対し，事前に工事内容 を丁寧に説明するとともに，苦情等が発生した場合には適切に対応するな どの措置を講ずる。

【工事関係車両の走行による大気汚染】
予測結果によると，工事関係車両の走行による二酸化窒素の年平均値の寄与率は $0.18 ~ 0.42 \%$ ，浮遊粒子状物質は $0.01 \sim 0.02 \%$ であることから，工事関係車両の走行に起因する二酸化窒素及び浮遊粒子状物質が周辺環境に及ぼす影響は，小さ いと判断する。

大気汚染に係る環境基準及び名古屋市の大気汚染に係る環境目標値との対比を行った結果，工事関係車両の走行については，二酸化窒素濃度の日平均値の年間 98% 値並びに浮遊粒子状物質濃度の日平均値の 2% 除外値は，環境基準の値及び環境目標値（市民の健康の保護に係る目標値）を下回り，浮遊粒子状物質濃度の年平均値は，環境目標値（快適な生活環境の確保に係る目標値）と同じ値である。

また，建設機械の稼働による影響との重合につ いては，二酸化窒素濃度の日平均値の年間 98% 値並びに浮遊粒子状物質濃度の日平均値の 2% 除外値は，環境基準の値及び環境目標値（市民の健康 の保護に係る目標値）を下回り，浮遊粒子状物質濃度の年平均値は，環境目標値（快適な生活環境 の確保に係る目標値）と同じ値である。

環境要素	調 査	予 測
悪 臭	【工事中】 現地調査によると，特定悪臭物質濃度については，全ての項目で悪臭防止法に基づく規制基準値を下回っ た。 臭気指数については，名古屋市環境保全条例に基づく指導基準値を下回った。	【工事中】 現地調査の結果，悪臭の発生が最も予想される夏季において，事業予定地周辺 の調査地点での特定悪臭物質濃度は規制基準値を，臭気指数は指導基準値を下回 っており，現況において悪臭の発生源は ないものと考えられる。 本工事において，悪臭の影響が懸念さ れる大江川の河床に堆積しているへドロ層を含む底質について，盛土部について は約 4 m の盛土，非盛土部については地盤改良による固化処理により適切に処理す る計画である。ヘドロ層の掘削時には，へ ドロからの悪臭の発生が想定されるもの の，ヘドロが露出する時間をできる限り短くなるように施工する計画である。ま た，盛土に利用する土砂は，臭いの少ない山土又は建設残土を活用し，且つ，土壌汚染対策法に定める基準に適合した搬入土 を用いる計画である。 これらのことから，工事期間中におい て，事業予定地周辺の特定悪臭物質及び臭気指数は，規制基準値及び指導基準値 を下回ると予測される。
騒 音	【建設機械の稼働による騒音】 既仔資料によると，事業予定地周辺の昼間の環境騒音は，環境基準の適用のある地点において，環境基準 を達成していなかった。 現地調査によると，昼間について環境基準を達成していた。	【建設機械の稼働による騒音】 施工区域の境界上における建設機械の稼働による騒音レベルの最大値は， $82 \mathrm{~dB}(\mathrm{~A})$ と予測される。 ※住居が存在する大江川上流部におい て，建設機械が堤防と同程度の高さで稼働する時期の騒音レベルの予測結果 は資料編に示す。

環境の保全のための措置	評 価
【工事中】 －橋梁の上下流の非盛土部について，地盤改良の際，ヘドロ層を含む底質が露出する期間が生じるが，露出する時間 をできる限り短くなるよう工程計画 を検討し，速やかに地盤改良を行う。 －工事の実施にあたっては，施工業者間 で連絡調整を行らとともに，情報共有 を緊密に行えるような体制づくりに努める。 －周辺の住民等に対し，事前に工事内容 を丁寧に説明するとともに，苦情等が発生した場合には適切に対応するな どの措置を講ずる。	【工事中】 予測結果より，工事期間中において，事業予定地周辺の特定悪臭物質濃度は規制基準値を，臭気指数は指導基準値を下回る。なお，悪臭防止法の特定悪臭物質濃度，名古屋市環境保全条例の臭気指数指導基準値は現在の大江川に適用されるも のではないが，参考までに比較を行った。 工事に際しては，ヘドロ層を含む底質が露出す る期間をできる限り短くなるよう工程計画を検討し，速やかに地盤改良を行う等の環境の保全の ための措置を講ずることにより，周辺の環境に及 ぼす影響の低減に努める。
【建設機械の稼働による騒音】 －建設機械について，原則として低騒音型機械を使用する。 －大きな音を発生する建設機械が同時 に多数稼衝することのないような工事計画の策定に努める。 －運搬車両のアイドリングについて，作業時及びやむを得ない場合以外は，停止する。 －建設機械の使用に際しては，負荷を小 さくするよう心がけるとともに，十分 な点検•整備により，性能の維持に努 める。 －住居が存在する大江川上流部におい て，建設機械が堤防と同程度の高さで稼働する時期には，施工区域境界付近 （パラペット天端上）に遮音壁を設置 する。 工事の実施にあたつては，施工業者間 で連絡調整を行らとともに，情報共有 を緊密に行えるような体制づくりに努める。 －周辺の住民等に対し，事前に工事内容 を丁寧に説明するとともに，苦情等が発生した場合には適切に対応するな どの措置を講ずる。	【建設機械の稼働による騒音】 予測結果によると，施工区域の境界上における建設機械の稼働による騒音レベルの最大値は 82 dB （A）であり，「名古屋市環境保全条例」に基づ く特定建設作業に伴う騒音の規制に関する基準値を下回る。なお，予測場所には，騒音規制法が適用されない工業専用地域が含まれるが，参考ま でに騒音の規制に関する基準と比較すると，騒音 レベルの最大値は基準値を下回る。 本事業の実施にあたっては，建設機械につい て，原則として低騒音型機械を使用する等の環境 の保全のための措置を講ずることにより，周辺の環境に及ぼす影響の低減に努める。

環境要素	調 査	予 測
騒 音	【工事関係車両の走行による騒音】 既存資料調査によると，事業予定地周辺における昼間の等価騒音レべ ル（ $\mathrm{L}_{\text {连 }}$ ）は $59 ~ 70 \mathrm{~dB}$ であり，環境基準を達成している。 現地調査によると，昼間の等価騒音レベルは，調査地点 No． 2 について は，環境基準を達成していなかった が，No． 4 については，環境基準を達成していた。	【工事関係車両の走行による騒音】 工事関係車両の走行による昼間の等価騒音レベル $\left(\mathrm{L}_{\text {Aeq }}\right)$ は $64 ~ 73 \mathrm{~dB}$ と予測され る。 また，工事関係車両の走行による増加分は $0 \sim 2 \mathrm{~dB}$ 程度と予測される。

環境の保全のための措置	評 価
【工事関係車両の走行による騒音】 －土砂，資材等の搬出入については，積載量に応じた適正な車種の選定による運搬の効率化を推進することにより さらに工事関係車両の走行台数を減ら すよう努める。 －工事関係の通勤者には，公共交通機関 の利用や自動車の相乗りを指導し，通勤に使用する車両の走行台数を減らす よう努める。 －工事関係車両については，十分な点検•整備を行い，急発進や急加速を避ける など，適正な走行に努める。 －アイドリングストップの遵守を指導す る。 －走行ルート 4 については，学校及び住居等生活関連施設が隣接することか ら，工事関係車両の走行時間，交通量等について適切な配車計画を検討する とともに，住居及び学校の近くを走行 する際は，徐行運転を行う等静穏な走	【工事関係車両の走行による騒音】 予測結果によると，工事関係車両の走行によ る工事中の予測値は，全予測地点で $0 \sim 2 \mathrm{~dB}$ 程度 の増加である。 工事関係車両の走行による騒音レベルは， No． 4 地点では 2 dB 増加するものの，環境基準の値（ 65 dB ）を下回る。No． 2 地点については，環境基準の値（ 70 dB ）を上回るものの，現況におい ても環境基準の値を上回っている状況であり，工事関係車両の走行による増加分は 0 dB であ る。騒音レベルが 2 dB 増加するNo． 4 地点の前面道路について，住居等生活関連施設の近くを走行する際は，徐行運転を行う等静穏な走行に努 めることにより，騒音の増加を減らすよう配慮 する。 本事業の実施にあたっては，土砂，資材等の搬出入の効率化により，さらに工事関係車両の走行台数を減らすよう努める等の環境の保全の ための措置を講ずることにより，周辺の環境に及ぼす影響の低減に努める。

環境の保全のための措置	評 価
【建設機械の稼働による振動】 －大きな振動を発生する建設機械が同時 に多数稼働することのないような工事計画の策定に努める。 －建設機械について，原則として低振動型機械を使用する。 －建設機械の使用に際しては，負荷を小 さくするよう心がけるとともに，十分 な点検•整備により，性能の維持に努め る。 －住居等に近い場所で工事を実施する際 は，丁寧な作業に努めるなど，周辺環境 への影響の低減を十分に図る。 －工事の実施にあたつては，施工業者間 で連絡調整を行うとともに，情報共有 を緊密に行えるような体制づくりに努 める。 －周辺の住民等に対し，事前に工事内容 を丁寧に説明するとともに，苦情等が発生した場合には適切に対応するなど の措置を講ずる。	【建設機械の稼働による振動】 予測結果によると，施工区域の境界上にお ける建設機械の稼働による振動レベルは，最大値で 72 dB である。 建設機械の稼働による振動レベルは，「名古屋市環境保全条例」に基づく特定建設作業に伴ら振動の規制に関する基準値を下回る。な お，予測場所には，振動規制法が適用されない工業専用地域が含まれるが，参考までに振動 の規制に関する基準と比較すると，振動しベ ルの最大値は基準値を下回る。 本事業の実施にあたっては，建設機械につ いて，原則として低振動型機械を使用する等 の環境の保全のための措置を講じ，また，住居等に近い場所で工事を実施する際には，丁寧 な作業に努めるなど周辺の環境に及ぼす影響 の低減に努める。
【工事関係車両の走行による振動】 －土砂，資材等の搬出入については，積載量に応じた適正な車種の選定による運搬の効率化を推進することにより，さ らに工事関係車両の走行台数を減らす よう努める。 －工事関係の通勤者には，公共交通機関 の利用や自動車の相乗りを指導し，通勤に使用する車両の走行台数を減らす よう努める。 －工事関係車両については，十分な点検•整備を行い，急発進や急加速を避ける など，適正な走行に努める。 －走行ルート 4 については，学校及び住居等生活関連施設が隣接することか ら，工事関係車両の走行時間，交通量等 について適切な配車計画を検討すると ともに，住居及び学校の近くを走行す る際は，徐行運転を行う等静穏な走行 に努めることにより，振動の増加を減 らすよう配慮する。 －工事の実施にあたっては，施工業者間 で連絡調整を行うとともに，情報共有 を緊密に行えるような体制づくりに努 める。 －周辺の住民等に対し，事前に工事内容 を丁寧に説明するとともに，苦情等が発生した場合には適切に対応するなど の措置を講ずる。	【工事関係車両の走行による振動】 予測結果によると，工事関係車両の走行に よる工事中の予測値は，全予測地点で $0 \sim 7 \mathrm{~dB}$程度の増加である。 工事関係車両の走行による振動レベルは，全予測地点で「振動規制法」に基づく要請限度 を下回るが，No． 4 地点では最大 7 dB 増加する と予測される。No． 4 地点の前面道路について，住居等生活関連施設の近くを走行する際は，徐行運転を行う等静穏な走行に努めることに より，振動の増加を減らすよう配慮する。 本事業の実施にあたっては，土砂，資材等の搬出入の効率化により，さらに工事関係車両 の走行台数を減らすよう努める等の環境の保全のための措置を講ずることにより，周辺の環境に及ぼす影響の低減に努める。

環境要素	調 查	予 測
水質•底質	【工事中】 既存資料調查によると，令和 2 年度の事業予定地周辺の水質は，生活環境項目は環境基準に適合していな い項目があり，健康項目は，全ての項目で環境基準に適合している。ダイ オキシン類は，全ての地点で環境基準に適合している。大江川の令和 2年度の調査結果は年平均値で $0.21 \mathrm{pg}-\mathrm{TEQ} / \mathrm{L}$ であり，環境基準に適合している。 また，平成 $28 ~$ 令和 2 年度の化学的酸素要求量（COD）及び浮遊物質量 （SS）の経年変化は令和元年度に高 い値を示している。 底質は，暫定除去基準に定められ ているポリ塩化ビフェニル（PCB）及 び総水銀は，全ての地点で基準値を下回っている。アスファルトマット より下を対象とした底質調查結果 は，ヘドロ層において，PCB，ベンゼ ン，砒素，鉛，ふつ素，ほう素及びダ イオキシン類が基準値を超過してい る。 現地調査によると，水質について は，生活環境項目は，pH，SS，DO，全窒素，全燐，全亜鉛で環境基準，環境目標値を満足しない地点，時期及び層がみられた。その他の項目は地点，時期及び層で環境基準，環境目標値 を満足していた。健康保護項目等は，全地点で環境基準を満足していた。 底質については，いずれの地点も粘性の土質であり，事業予定地の No．A 及びNo．B は砂分の割合が多く周辺海域のNo．C及びNo．Dではシル ト・粘土分の割合が多かった。 事業予定地の水質，底質，流況の状況は，周辺海域と比べても大きな差異はなく，水質，底質，流況の状況は季節を通じて同様の傾向を示してい た。	【工事中】 現地調査の結果，事業予定地での事業予定地での有害物質（水質）は，全ての地点で環境基準に適合していることから，現況において水質の汚染はないものと考 えられる。 本工事において，汚濁物質及び有害物質の流出を防ぐための工事計画及び排水処理が計画されている。また，工事期間中 は河口部に汚濁防止膜を設置し，ヘドロ層を含む底質の改良時には有害物質排水処理施設を設け，水質処理を行ら計画で ある。 これらのことから，工事期間中におい て，汚濁物質及び有害物質の拡散•流出す る可能性は小さいと予測される。

環境の保全のための措置	評 価
【工事中】 －橋梁の上下流の非盛土部について，地盤改良の際，ヘドロ層を含む底質が露出する期間が生じるが，露出する時間をできる限り短くなるよう工程計画を検討し，速やかに地盤改良を行う。 工事計画の検討，排水処理の実施にあたつ ては関係機関と十分に協議調整する。 －脱水された水の状況確認，処理等を適切に行い，污染土のエコチューブ袋への充填， エコチューブ袋の埋戻し等の作業を十分 に注意して施工する。 直害物質排水処理施設については，施設の管理や排出水の監視を十分に行う。 水質に異常が確認された場合，民地への影響がでないようにするために，官民境界付近に鋼矢板を打設する等の遮断をする。工事の実施にあたっては，施工業者間で連絡調整を行うとともに，情報共有を緊密に行えるような体制づくりに努める。 －周辺の住民等に対し，事前に工事内容を丁寧に説明するとともに，苦情等が発生した場合には適切に対応するなどの措置を講 ずる。	【工事中】 予測結果において，汚濁物質及び有害物質が拡散•流出する可能性は極めて小さい と考えられることから，水面の埋立てによ る水質•底質への影響は小さいと判断する。

環境要素	調 查	予 測
水質 •底質	【存在時】 既存資料調査及び現地調查は，【工事中】参照。	【存在時】 ア．水 象 防潮壁のみ存在時，防潮壁と埋立地両方の存在時について，流速変化の範囲は， $3.0 \mathrm{~cm} / \mathrm{s}$ 増加 $\sim 6.6 \mathrm{~cm} / \mathrm{s}$ 減少の範囲にあっ た。事業予定地近傍の 4 地点における流速値をみると，現況で最大 $3 \mathrm{~cm} / \mathrm{s}$ 程度で あり，防潮壁と埋立地両方の存在時は流速が $1 \sim 2 \mathrm{~cm} / \mathrm{s}$ 程度減少するが，元々の流速が小さいことから，その影響は小さい と考えられる。 また，下層（ 7.0 m ～海底）の流速変化及び流速変化の範囲は，上層（ $0 \mathrm{~m} \sim 2.6$ $\mathrm{m})$ や中層（ $2.6 \mathrm{~m} \sim 7.0 \mathrm{~m}$ ）と比較し小さ い。 以上により，埋立地の存在による水象 の変化は小さいと予測される。 ィ。水質（COD） 防潮壁より河川側においては，流速の低下に伴い COD がわずかに上昇している。防潮壁より海側においては，わずかにCOD の増減がみられる。現況再現年次と，防潮壁と埋立地両方の存在時を比較した際の COD 増加値は最大 $0.25 \mathrm{mg} / \mathrm{L}$ であり，この値を現況調査結果における各地点の COD75\％値に足し合わせても，名古屋市の環境目標値（ $5 \mathrm{mg} / \mathrm{L}$ ）を下回る。 以上により，埋立地の存在による水質 （COD）は，流速が減少した際に濃度が上昇する可能性が考えられるが，変化は小 さいと予測される。

環境の保全のための措置	評 価
	【存在時】 予測結果において，埋立地の存在による水象の変化は小さいと予測されること，流速が減少した際にCOD 濃度が上昇する可能性が考えられるが，COD 増加値は最大 $0.25 \mathrm{mg} / \mathrm{L}$ であり，この値を現況調査結果に おける各地点のCOD75 \％値に足し合わせて も，名古屋市の環境目標値（ $5 \mathrm{mg} / \mathrm{L}$ ）を下回 ること，また，事業計画より，新たな污濁負荷となる排出はないことから，埋立地の存在による水質•底質への影響は小さいと判断する。

環境要素	調 查	予 測
地下水	【工事中】 既存資料調査によると，令和2年度の事業予定地周辺の地下水質の状況は，南区三条一丁目の砒素及び南区要町のクロロエチレンが環境基準 に適合していない。 平成 29 年度における事業予定地 の地下水調査結果は，対象8項目は，全項目，両地点とも環境基準に適合 していた。 平成 $28 ~ 29$ 年度における事業予定地の透水性試験結果は，透水係数 k （m／s）はヘドロ層が 10^{-9} ，粘性土が $10^{-7} \sim 10^{-8}$ のオーダーの値であり，透水性が「非常に低い～低い」土層であ った。一方，砂質土は 10^{-5} のオーダ ーの値であり，透水性が「中位」の土層であった。 事業予定地における不透水層は， へドロ層の下層に厚く分布する粘性土（シルト；Ac）層となる。帯水層は，不透水層の上部に位置する砂質土層，ヘドロ層（ $0.95 \sim 3.25 \mathrm{~m}$ 厚），覆土層（平均 50 cm 厚）及びアスファル トマット（ 5 cm 厚）となる。 底質はこれまでの調査において，汚染土壌はへドロ層のみに留まって おり，へドロ層上部の覆士層，へドロ層下部の砂質土層には広がっていな い。 大江川の水底下は，ヘドロ層の少 し下層まで带水している。へドロ層 は，現場で地下水が採水できず透水係数も非常に低いことから，層内の水はほとんど動いていないと考えら れる。一方，へドロ層の上下層にある覆土層と砂質土層は，現場で採水が できたことからも地下水として流動 している。この覆土層と砂質土層で は，地下水の污染は碓認されておら ず，土壌の汚染も確認されていない。	【工事中】 ア．地下水活染の発生•拡散 既存資料調査の結果，ヘドロ層の上層及び下層について，現状で地下水質及び土壌ともに汚染は確認されておらず， ドロ層内の水もほとんど動いていないこ とがわかっている。 水面の埋立て（栽荷重）に伴亏污染水の溶出の可能性については，汚染土層内で水の動きがほとんどないことに加え，へ ドロ層の下層には不透水層があること，工事は大江川の流路と遮断してから（河道内仮締切工），ヘドロ層の上層にある覆土層及びアスファルトマットの上に盛土 を行らことから，汚染物質が上層及び下層の地下水及び大江川右岸へ溶出する可能性は極めて小さいと予測される。 ィ．汚染した地下水の摂取 污染土層の水を直接的に摂取する可能性は，污染土層内で水の動きがほとんど ないことに加え，大江川の両岸には護岸構造物が不透水層まで設置されており，河川内の地下水が護岸背後まで移動でき ないこと，また，事業予定地が感潮域のた め飲用利用はほとんどないと考えられる ことから，その可能性は極めて低いと予測される。

環境の保全のための措置	評 価
【工事中】 －汚染土による周辺環境への影響の防止に留意した工事計画を策定する。 工事計画の検討，排水処理の実施にあたつ ては関係機関と十分に協議調整する。 －脱水された水の状況確認，処理等を適切に行い，汚染土のエコチューブ袋への充填， エコチューブ袋の埋戻し等の作業を十分 に注意して施工する。 －水質に異常が確認された場合，民地への影響がでないようにするために，官民境界付近に鋼矢板を打設する等の遮断をする。 －工事施工前，施工中及び施工後に地下水質 の調查を行い，施工に伴う地下水汚染が生 じていないことを確認するとともに，測定結果に応じて適切な措置を講ずる。 工事の実施にあたっては，施工業者間で連絡調整を行うとともに，情報共有を緊密に行えるような体制づくりに努める。 －周辺の住民等に対し，事前に工事内容を丁寧に説明するとともに，苦情等が発生した場合には適切に対応するなどの措置を講 ずる。	【工事中】 予測結果によると，工事による周辺の地下水に及ぼす影響は極めて小さいことか ら，工事による地下水污染の発生•拡散へ の影響は極めて小さいと判断する。

環境要素	調 查	予 測
地 盤	【工事中】 既存資料調査によると，事業予定地及び周辺で地盤沈下（年間 1 cm 以上の沈下）は発生していない。 事業予定地内の地質（地層層序） は，大江川水底表面に汚染土対策と して施されたアスファルトマットが敷設され，その下に覆土が設けられ ている。その下層に汚染土のヘドロ層が分布し，その下層には不透水性 の粘性土層が厚く分布し，その下層 に砂質，礫質，粘性の土層が交互に分布している。 事業予定地周辺となる護岸背後 は，砂を主とした盛土層が $3 \sim 4 \mathrm{~m}$ 程度以上の層厚でみられ，その下層に砂質土層が分布する。厚く分布する粘性土層以下は，事業予定地内の河川とほぼ同様の地層層序となってい る。	【工事中】 地盤沈下は， 0.86 k 左岸の送電鉄塔で，平均傾斜角が限界角をわずかに超えた。 また， 0.86 k 左岸の建屋では相対沈下量，1．66k 左岸の民家では相対沈下量と平均傾斜角が限界値もしくは限界角の範囲 に含まれた。 限界値（限界角）とは，この値を超える と沈下による何らかの障害が建物に発生 する確率が高いとされるものである。本予測による相対沈下量や平均傾斜角は限界範囲内の最小値側であったものの，工事施工時には動態観測が必要と予測され る。

環境の保全のための措置	評 価
【工事中】 ア．予測の前提とした措置 －右岸側工事時には，先行解析の結果，護岸背後で許容値を超える沈下が生じると評価されたため，盛土高を $3.6 \sim 4.3 \mathrm{~m}$ に低減する。 イ．その他の措置 －埋立てに用いる土砂による周辺環境への影響の防止に留意した工事計画を策定す る。 －工事施工時には，盛土の安定性や圧密状況，近接構造物等に対する影響等を動態観測によって確認し，必要に応じて更なる沈下の軽減対策を実施する。 工事前及び工事完了後に家屋調查を行い，工事による影響が碓認された場合には，適切な措置を講じる。 工事の実施にあたつては，施工業者間で連絡調整を行うとともに，情報共有を緊密に行えるような体制づくりに努める。 周辺の住民等に対し，事前に工事内容を丁寧に説明するとともに，苦情等が発生した場合には適切に対応するなどの措置を講 ずる。	【工事中】 水面の埋立てによる地盤沈下は，過年度 より解析•評価•対策の検討が進められて おり，護岸背後に及ぼす影響についても，右岸工事時の盛土高を低減する対策が事業計画に反映されている。予測結果によると，水面の埋立てに伴ら護岸背後の地盤沈下は少ないと予測されること，また，工事施工時には動態観測を行い，必要に応じて対策 を実施することから，工事の実施による地盤への影響は小さいと判断する。

環境要素	調 査	予 測
安 全 性	【工事中】 既存資料調査によると，調査地域 における交通網の状況は，主要な道路網として，名古屋高速 4 号東海線，名古屋高速 3 号大高線，一般国道 23号及び 247 号，主要県道名古屋半田線及び諸輪名古屋線等が通ってい る。鉄道は，名鉄の常滑線及び築港線，臨海鉄道の東港線及び東築線が通っている。バス路線は，市バスが通 っている。 平成 27 年度における事業予定地周辺の道路の自動車交通量は，一般国道 247 号（No．7）が 48，008台／24時間，主要県道諸輪名古屋線（No．8）が 14,607 台 $/ 24$ 時間，主要県道名古屋半田線（No．10）が 14，721台／24 時間，主要県道名古屋半田線（No．11）が 28，443台／24時間である。また，大型車混入率は， $12.9 \sim 43.3 \%$ である。 現地調査によると，自動車交通量 の調査結果，最も交通量が多い区間 は，大型車類は区間E，小型車類及び合計は区間Gであった。大型車混入率は $4.7 \sim 46.9 \%$ であり，最も混入率 が高い区間は区間Aであった。 事業予定地周辺は，主要交差点に信号機や横断歩道等の安全施設が整備されており，主要道路においては歩車道分離がなされているが，一部 には歩道無しの区間が存在する。	【工事中】 ア．事業予定地周辺の発生集中交通量 工事関係車両の発生集中による自動車交通量の増加率は， $0.5 \sim 3.5 \%$ と予測さ れる。 イ．工事関係車両出入口における歩行者及び自転車との交錯 工事関係車両出入口における工事関係車両は 158 台／ 16 時間（ピーク時： 20 台／時），歩行者は 30 人／ 16 時間（ピーク時： 8 人／時），自転車は 99 台 $/ 16$ 時間（ピー ク時： 33 台／時）と予測される。

環境の保全のための措置
【工事中】
本事業の実施にあたっては，以下に示す環
境の保全のための措置を講ずる。
•工事関係車両の出入口付近では，視認性を

－工事関係車両の運転者には，走行ルートの遵守，適正な走行の遵守を指導し，徹底さ せる。
－工事関係車両の走行については，交通法規 を遵守し，安全運転を徹底させる。
－土砂，資材等の搬出入については，積載量 に応じた適正な車種の選定による運搬の効率化を推進することにより，さらに工事関係車両の走行台数を減らすよら努める。
－工事関係の通勤者には，公共交通機関の利用や自動車の相乗りを推進することによ り，通勤車両の走行台数を減らすよう努め る。
－工事関係車両の走行ルートにおいて，通学路と接する箇所には，交通誘導員を適切に配置し，工事関係車両の徐行及び一時停止 を徹底させるととともに，歩行者及び自転車に対しても注意を払う。
－工事の実施にあたっては，施工業者間で連絡調整を行うとともに，情報共有を緊密に行えるような体制づくりに努める。
－周辺の住民等に対し，事前に工事内容を丁寧に説明するとともに，苦情等が発生した場合には適切に対応するなどの措置を講 ずる。

【工事中】
予測結果によると，工事関係車両の走行 ルート上の各区間における工事関係車両に よる交通量の増加率は， $0.5 \sim 3.5 \%$ と予測 されるが，これらのルートは，概ねマウン トアップ等により歩車道分離がなされてお り，主要道路と交差する位置には信号機や横断歩道が整備されている。また，近隣の小学校が指定している通学路と接する箇所 は，マウントアップや信号機等が整備され ている。これらのことから，工事関係車両 の走行による交通安全への影響は小さいと判断する。

本事業の実施にあたっては，工事関係車両出入口付近の視認性を良好に保ち，交通誘導員を配置する等の環境の保全のための措置を講ずることにより，周辺の交通安全 に及ぼす影響の低減に努める。

環境要素	調 查	予 測
廃葉物等		【工事中】 工事中に発生する廃棄物等は，コンク リートが約 300t，廃プラスチック類が約 1t，その他（アスファルトマット）が約 2，000t，その他（ヨシ）が約 10 ～ $20 t$ ，そ の他（かき殻）が約 13 t と推定した。この らち，再資源化率は，前 2 者が 100% ，後 3者が 0% である。廃棄物の処理にあたっ ては，収集•運般後，中間処理場へ搬入し リサイクルを行ら計画である。リサイク ルが行えない廃重物については，最終処分場へ搬入し，埋立処分する。
植 物	【工事中】 既存資料調査によると，調査地域及びそ の周辺で生育情報のある重要な陸生植物は 41 科 82 種であった。 現地調査によると，陸生植物が 230 種，植物プランクトンが 63 種，付着生物（植物）が 5 種確認された。 重要な種は，陸生植物で 3 種（イセウキ ヤガラ，アキノミチヤナギ，ホソバハマ アカザ）が確認された。 重要な群落，重要な水生植物は確認され なかった。	【工事中】 重要な種 3 種は，水面の埋立てにより，本種の確認地点及び生育環境が消失するた め，事業による影響はあると予測される。 しかしながら，これらの種は周辺に複数 の生育情報があり，大江川での確認個体数も少ない考えられることから，名古屋港湾における地域個体群に及ぼす影響は小さいものと予測される。
	【存在時】 既存資料調査及び現地調査は，【工事中】 参照。	【存在時】 事業予定地及び事業予定地周辺に重要 な水生植物はみられなかったことから，埋立地の存在による影響はないものと予測される。

環境の保全のための措置	評 価
【工事中】 本事業の実施にあたっては，以下に示す環境 の保全のための措置を講ずる。 －工事中に発生した廃棄物等については，関係法令等を遵守して，適正処理を図るとと もに再資源化に努める。 工事期間が 10 年と長期間であることか ら，工事期間中においても最新のリサイク ル技術の情報収集に努め，収集した知見に より適切な再資源化を図る。 －工事の実施にあたっては，施工業者間で連絡調整を行うとともに，情報共有を緊密に行えるような体制づくりに努める。	【工事中】 本事業の実施においては，工事中に発生 した廃棄物等については，関係法令等を遵守して，適正処理を図るとともに再資源化 に努める等の，環境の保全のための措置を講ずることにより，周辺の環境に及ぼす影響のさらなる低減に努める。また，最新の リサイクル技術の情報収集に努め，可能な限り再資源化を図っていくものとする。
	【工事中】 予測結果によると，工事による水面の埋立 てにより植物の生育環境が消失するため事業による影響はあるが，周辺に生育情報が あることから，水面の埋立てによる植物へ の影響は小さいと判断する。
	【存在時】 予測結果によると，工事による水面の埋立 てにより植物の生育環境は消失するが，事業予定地及び事業予定地周辺に重要な水生植物種はみられなかったことから，埋立地 の存在による水生植物種への影響は回避さ れるものと判断する。

環境要素	調 査	予 測
動 物	【工事中】 既存資料調査によると，調査地域及 びその周辺で生息情報のある重要な陸生及び水生動物は，哺乳類が 5 種，鳥類が 43 種，爬虫類が 3 種，両生類 が 2 種，昆虫類が 54 種，陸生貝類が 0種，クモ類が 5 種，底生動物が 69 種，魚介類が 25 種，付着生物が 0 種であ った。 現地調査によると，哺乳類が 1 種，鳥類が 60 種，爬虫類が 3 種，昆虫類 が 342 種，動物プランクトンが 43 種，底生生物が 26 種，魚卵が 8 種，稚仔魚が 5 種，魚介類が 32 種，付着生物 （動物）が 27 種確認された。 重要な種は，鳥類で 4 種（ケリ，オ オセグロカモメ，コアジサシ，ミサ ゴ），爬虫類で 1 種（ニホンスッポン），昆虫類で 2 種（ヤマトヒメメダカカッ コウムシ，キアシハナダカバチモド キ），底生生物で 2 種（カワグチツボ， ウミゴマツボ），魚介類で 6 種（ニホン ウナギ，トビハゼ，マサゴハゼ，クシ テガニ，モクズガニ，コメツキガニ） が確認された。 水鳥の重要な餌場等の注目すべき生息地は確認されなかった。	【工事中】 ア．陸生動物種及び注目すべき生息地へ の影響 鳥類 4 種は，繁殖行動が確認されず営巣適地も近くに分布しないと考えら れるため，事業予定地及び事業予定地周辺では繁殖していないと考えられる（オ オセグロカモメは冬鳥）。また，確認内容等から事業予定地の餌場としての価値 も低いと考えられることから，事業によ る影響は小さいものと予測される。 爬虫類のニホンスッポンは，水面の埋立てにより本種の確認地点は消失し生息環境も変化するが，大江川の河川連続性は確保される。本種は移動能力があ り，多様な水環境にも生息できるため，工事中は事業予定地の上下流へ移動す るものと考えられる。事業による影響は小さいものと予測される。 昆虫類 2 種は，水面の埋立てにより本種の確認地点及び生息環境が消失する ため，事業による影響はあると予測され る。しかしながら，大江川での確認個体数も多くないと考えられること等から，名古屋港湾における地域個体群に及ぼ す影響は小さいものと予測される。 イ・重要な水生動物種及び注目すべき生息地への影響 底生動物 2 種は，移動能力が低く，水面の埋立てにより本種の確認地点及び生息環境が消失するため，事業による影響はあると予測される。しかしながら，両種は周辺に生息情報があり，大江川で の確認個体数も多くないと考えられる ことから，名古屋港湾における地域個体群に及ぼす影響は小さいものと予測さ れる。 魚介類 6 種のうちニホンウナギ，モク ズガニは移動能力が高く，マサゴハゼは埋立て範囲外にも生息するため，事業に よる影響は小さいものと予測される。方，トビハゼ，クシテガニ，コメツキガ二は，確認地点及び生息環境が消失する ため，事業による影響はあると予測され る。しかしながら，これらの種は周辺に生息情報があり，大江川での確認個体数 も多くないと考えられることから，名古屋港湾における地域個体群に及ぼす影響は小さいものと予測される。 れるため，水面の埋立て

環境の保全のための措置	評 価
【工事中】 －工事時の大気汚染，粉じん，騒音，振動，濁水等による重要な動物種の生息環境（施工区域下流側の感潮域も含む）への影響の防止に留意した工事計画を策定する。 －工事に先立ち，施工区域の境界に污濁防止膜を設置することにより，濁りの拡散を抑制する。 －排水の発生の低減に努めるとともに，発生 した排水は適切に水質处理を行った後，放流する。 －水生動物の生息域を少しでも消失させない よう，専門家と相談し，重要な水生動物種の移動能力を踏まえ，水面の埋立てによる影響を可能な限り軽減するための工事計画を検討し，実施する。 －工事中，施工区域内でスナメリが確認され た場合は，区域外に出るまで監視を続ける など，工事による影響を軽減するための措置を講じる。 －水面の埋立てによる影響を可能な限り軽減 するため，工事計画を検討し実施する。 －工事の実施にあたっては，施工業者間で連絡調整を行らとともに，情報共有を緊密に行えるような体制づくりに努める。	【工事中】 予測結果によると，工事による水面の埋立てにより動物の生息環境が消失する ため事業による影響はあるが，周辺に生息情報があることから，水面の埋立てに よる動物への影響は小さいと判断する。

環境要素	調 查	予 測
動 物	【存在時】 既存資料調査及び現地調査は，【工事中】参照。	【存在時】 ア．重要な水生動物種への影響 ゼ，クシテガニ及びコメツキガニは，開放水面である事業予定地より海側の水域は，基本的に干満差がなくなり淡水化 する。この海側の水域は，淡水化に伴い ヨシ群落が成立することも考えられる が汽水域ではなくなるため，これらの種 の生息環境は消失する。しかしながら， これらの種は周辺に生息情報があり，大江川での確認個体数も多くないと考え られることから，名古屋港湾における地域個体群に及ぼす影響は小さいものと予測される。 ニホンウナギは移動能力が高く，モク ズガニは移動能力があり，両種とも多様 な水環境にも生息できるため，大江川の連続した水域で生息を続けるほか，周辺河川へ移動するものと考えられる。事業 による影響は小さいものと予測される。 マサゴハゼは，生息が確認された事業予定地より海側の水域が淡水化するた め，生息環境が消失すると予測される。 しかしながら，本種は周辺に生息情報が あり，大江川での確認個体数も多くない と考えられることから，名古屋市河口部 における地域個体群に及ぼす影響は小 さいものと予測される。 イ．注目すべき生息地への影響 事業予定地内に注目すべき生息地は確認されなかったことから，埋立地の存在による影響はないものと予測される。

環境の保全のための措置	評 価
	【存在時】 予測結果によると，工事による水面の埋立てにより水生動物の生息環境は消失 するが，重要な水生動物種に及ぼす影響 は小さく，事業予定地内に注目すべき生息地は確認されなかったことから，埋立地の存在による動物への影響は小さいと判断する。

環境要素	調 查	予 測
生 態 系	【工事中】 調査範囲の大半を占める大江川は，全体的に人為的要素の強い環境であ り，両岸とも人工護岸となっている。満潮時には護岸まで水位が上がる感潮域で，水生生物面からみた海域との連続性は確保されているが，注目され る干潟，藻場，砂浜等は報告されてい ない。調查範囲内の大江川は，大江川緑地下の暗渠から開渠となった環境 で，川幅は下流方向に約 70 m （事業予定地内（1）），約 80 m （事業予定地内（2）），約 150 m （海側）となっている。開放水面が連続してみられ，ヨシ群落等の植生は，上流側（事業予定地内（1）で成立している。 また，事業予定地の上流側に隣接す る大江川緑地は，植栽された樹木が高木に生長しており，まとまった樹林地 が形成されている。 地域を特徴づける生態系の注目種等は，生態系の上位に位置するという上位性の視点からは，魚類の「スズ キ」，生態系の特徴をよく現すという典型性の視点からは，魚類の「ハゼ類」，植生の「ヨシ群落」，鳥類の「シ ジュウカラ」を抽出した。	【工事中】 スズキは，水面の埋立てにより確認地点が消失し生息環境も変化するが，大江川の河川連続性は確保される。本種は移動能力が高く，多様な水環境にも生息で きるため，工事中は事業予定地の下流へ移動するものと考えられる。また，餌資源となる魚介類や底生生物は事業予定地より海側の水域においても多く確認 されているため，大きな餌資源量の減少 はないと考えられることから，事業によ る影響は小さいものと予測される。 セ類は，その多くの種が埋立てられ ない海側へ移動すると考えられるため，工事中の影響は小さいものと予測され る。 ヨシ群落は，水面の埋立てにより，確認地点及び生育環境が消失し，ヨシ群落 を利用するクシテガニやトビハゼ，チョ ウ類やが類等のほか，アブラコウモリや ツバメといった上位種の生息環境も消失することになるため，事業による影響 はあると予測される。しかしながら，本群落はアスファルトマット上に成立し た二次的な植生であること，事業予定地 の周辺にも広く分布していることから，名古屋港湾における地域個体群に及ぼ す影響は小さいものと予測される。 シジュウカラは，大江川緑地の樹林帯 （植栽樹林群）で，年間を通して数例ず つ確認された。大江川緑地は改変されな いため，水面の埋立てによる影響はない ものと予測される。

環境の保全のための措置	評 価
【工事中】 －工事時の大気汚染，粉じん，騒音，振動，濁水等による重要な動物種の生息環境への影響の防止に留意した工事計画を策定する。 －工事に先立ち，施工区域の境界に汚濁防止膜を設置することにより，濁りの拡散を抑制する。 －排水の発生の低減に努めるとともに，発生 した排水は適切に水質処理を行った後，放流する。 －工事の実施にあたっては，施工業者間で連絡調整を行うとともに，情報共有を緊密に行えるような体制づくりに努める。	【工事中】 予測結果によると，生態系で抽出した注目種等に及ぼす影響は小さいことか ら，水面の埋立てによる地域を特徴づけ る生態系への影響は小さいと判断する。

環境要素	調 查	予 測
生 態 系	【存在時】 既存資料調査及び現地調查は，【工事中】参照。	【存在時】 スズキは，淡水への適応性があり，移動能力も高いため，海域や周辺河川へ移動するものと考えられることから，事業 による影響は小さいものと予測される。 なお，開放水面である事業予定地より海側の水域は淡水化するため，餌資源と なる魚介類や底生生物は減少するもの と考えられる。 ハゼ類は，その多くの種は汽水域を生息環境とし，純淡水の環境下では生息で きないため，淡水化に伴い生息環境が消失すると予測される。しかしながら，こ れらのハゼ類は周辺に生息情報があり，大江川での確認個体数も多くないと考 えられることから，名古屋港湾における地域個体群に及ぼす影響は小さいもの と予測される。 ヨシ群落は，開放水面である事業予定地より海側の水域が淡水化し，現況より ヨシの生育に適した環境になると考え られる。ヨシ群落が発達することもあ り，事業による影響は極めて小さいもの と予測される。 シジュウカラは，大江川の上部空間に植栽帯を設けた緑地が計画されている ため，本種の生息地も拡大すると考えら れる。事業による影響はなく，本種が生息できる樹林環境が創出されると予測 される。

環境の保全のための措置	評 価
【存在時】 - 事業予定地の緑化を図る。 - 地域の植生に適した緑化を図る等，周囲の自然環境と調和した土地利用に努める。 －緑地としての機能向上及び生物多樣性の保全に留意し，地域特性を踏まえた植生管理 を行う。	【存在時】 予測結果によると，生態系で抽出した注目種等に及ぼす影響は小さいことか ら，埋立地の存在による地域を特徴づけ る生態系への影響は小さいと判断する。

環境要素	調 查	予 測
水循 環	【存在時】 伊勢湾及び三河湾西部の潮流は，上 げ潮流は湾奥へ向かい，下げ潮流は湾口に向かって流れている。 調査地域には，大江川が流れてお り，調査地域の北側には山崎川及び堀川が，南側には天白川が流れている。 なお，事業予定地は大江川に位置す る。 水象については，No． 1 は夏季の海面下 2.0 m を除き，北方成分が大きくな っていた。No． 2 は夏季の海面下 5.0 m を除き，東方成分が大きくなってい た。	【存在時】 大江川の河川水はボックスカルバー トに入り，事業予定地より西側の開放水面に排水される計画であることから，河川水の状況の変化は小さいと予測され る。 海域は「第2部 第5章 水質•底質」 に示すとおり，埋立地の存在による流速 の変化は小さいと予測される。 地下水は，事業予定地の下流端に，既設鋼矢板が大江川を横断する形で不透水層まで打設されていることから，事業予定地内の地下水は，事業予定地外の海側と分離されている。事業の実施によ り，大江川は暗渠で流下するため，河川水と地下水が遮断される。事業予定地内 の地下水は滞水化し，水循環は停滞する と予測される。一方，事業予定地より西側の開放水面は，防潮壁の設置により淡水•滞水化を示すものの水域が維持され るため，地下水の状況に大きな変化はな いと予測される。 事業予定地内の雨水はボックスカル バートに流れ込み，事業予定地より西側 の開放水面に排水される構造となる計画であることから，事業の実施による雨水排水に大きな変化はないと予測され る。 これらのことから，埋立地の存在によ る水循環への影響は小さいと考えられ る。

| 環境の保全のための措置 | 評 |
| :---: | :--- | :--- |
| 価 | |

環境要素	調 査	予 測
人と自然 との触れ合いの活動 の場	【工事中】 人と自然との触れ合いの活動の場 として，調查地域内には13 の公園が あり，事業予定地周辺には，大江川緑地，宝生公園，滝春公園が隣接してい る。このうち，事業予定地の東側に広 がる大江川緑地は，大江川の上流側 （約 1.8 km ）を埋立てた際，その地上空間に造成した緑地で，利用者数は事業予定地周辺で最も多い。現地調查で得られた利用者数は，秋季の休日 1 日 で 880 名であり，事業予定地内の大江川左右岸道路（堤防天端）を散策等で利用する人も，この大江川緑地を起点•終点としている場合が多い。	［工事中】 ア．人と自然との触れ合いの活動の場の改変 事業予定地に隣接する大江川緑地，宝生公園及び滝春公園は，工事に伴ら直接的な改変はない。 イ．人と自然との触れ合いの活動の場の変化 水面の埋立てによる降下ばいじん量 は工事最盛期で $0.1 \mathrm{t} / \mathrm{km}^{2}$ •月以下，二酸化窒素寄与濃度は 0.004 ppm 以下，浮遊粒子状物質は $0.0005 \mathrm{mg} / \mathrm{m}^{3}$ 以下，建設作業騒音は工事最盛期で $60 \sim 65 \mathrm{~dB}$ 程度，建設作業振動は $50 \simeq 60 \mathrm{~dB}$ 程度であり，事業による影響は小さいと予測される。 ウ．事業予定地内の大江川左右岸道路工事期間中は，大江川の河川内で埋立 てが施工されるため，水辺景観の質は低下する。また，埋立てが進むと，堤防よ り高い位置に盛土面が出現する時期が あり（その後は堤防高まで自然沈下），眺望景観の質も低下する。 大江川左右岸道路の利用者は，大江川緑地を起点•終点としている場合が多 い。また，利用目的は「通行（通過）」が最も多く，水辺景観を求めて大江川左右岸道路を訪れる人は，調查を実施した休日で右岸が1日 31 名，左岸が1日 88 名 \qquad の調查は実施していないが，大江川左右岸道路の利用者は大江川緑地から移動 した人が多いという結果が得られてお \qquad ことから，一般的に利用者数は休日より少なくなると考えられる。 利用者の多い大江川緑地は改変され ないこと，人と自然との触れ合いを目的 に大江川左右岸道路まで訪れる人は少 ないと考えられることから，工事による影響は小さいものと予測される。

環境の保全のための措置	評 価
【工事中】 －大きな音や振動を発生する建設機械が同時 に多数稼働することのないような工事計画 の策定に努める。 －建設機械については，原則として低騒音•低振動型や排出ガス対策型建設機械を使用す る。 －排水の発生の低減に努めるとともに，発生 した排水は適切に水質処理を行った後，放流する。 －工事関係車両の運転者に対し，適正な走行， アイドリングストップの遵守を指導，徹底 する。 －工事関係車両が事業予定地周辺を走行する際，歩行者等に対する交通安全の確保に留意した工事計画の策定に努める。 －隣接する大江川緑地，宝生公園及び滝春公園の平日の利用状況の把握に努め，必要に応じて適切な措置を講じる。 －工事の実施にあたつては，施工業者間で連絡調整を行うとともに，情報共有を緊密に行えるような体制づくりに努める。 －周辺の住民等に対し，事前に工事内容を丁寧に説明するとともに，苦情等が発生した場合には適切に対応するなどの措置を講ず る。	【工事中】 人と自然との触れ合いの活動の場は改変されず，水面の埋立て及び建設機械の稼働による影響も小さいと予測された。 また，事業予定地内の大江川左右岸道路 は，自然との触れ合いを目的として訪れ る人は少ないと考えられること等から，工事による影響は小さいと予測された。 これらのことから，人と自然との触れ合 いの活動の場への影響は小さいと判断す る。

環境要素	調 査	予 測
温．室効果 ガス		【工事中】 工事中における温室効果ガス排出量 （二酸化炭素換算）は，建設機械の稼働 により $14, \underline{103} \mathrm{tCO}_{2}$ ，建設資材の使用によ り $47,346 \mathrm{tCO}_{2}$ ，建設資材等の運搬により $1,769 \mathrm{tCO}_{2}$ ，廃棄物の発生（埋立）により $\underline{7,547.1} \mathrm{tCO}_{2}$ ，廃棄物の発生（焼却）によ $\begin{aligned} & \frac{\text { り 0. } 4 \mathrm{tCO}_{2}}{2} \text { であり, ごあれらの合計は, } \\ & \underline{\mathrm{70}, 766 \mathrm{tCO}}{ }_{2} \text { と予測される。 } \end{aligned}$

環境の保全のための措置
【工事中】
本事業の実施にあたっては，以下に示す環境

ア．建設機械の稼働
－建設機械の不要なアイドリングを中止する とともに，作業効率や機械の燃料消費率の向上に努める。
－建設機械の使用に際しては，負荷を小さく するよう心がけるとともに，十分な点検•整備により，性能の維持に努める。
－省エネルギー型の建設機械を使用するな ど，燃料消費の低減に努める。

イ．建設資材の使用
－建設材料を製造する際，二酸化炭素の発生量が少ないものを使用するよう努める。

ウ．建設資材等の運搬
－資材等の搬出入については，積載量に応じ た適正な車種の選定による運搬の効率化を推進することにより，さらに工事関係車両 の走行台数を減らすよう努める。
－工事関係の通勤者には，公共交通機関の利用や自動車の相乗りを指導し，通勤車両台数を減らすように努める。
－工事関係車両については，十分な点検•整備 を行い，急発進や急加速を避けるなど，適正 な走行に努める。

- アイドリングストップの遵守を指導する。
- 一括運搬等，合理的な運搬計画を検討し，延 べ輸送距離の縮減に努める。
エ．廃棄物の発生
－工事中に発生した廃棄物等については，関係法令等を遵守して，適正処理を図るとと もに，減量化並びに再利用•再資源化に努め る。
－最新のリサイクル技術の情報収集に努め，可能な限り再資源化を図る。
オ，その他
－工事の実施にあたつては，施工業者間で連絡調整を行うとともに，情報共有を緊密に行えるような体制づくりに努める。

【工事中】
予測結果によると，工事中に発生する温室効果ガス排出量は，7 $\underline{0,766} \mathrm{tCO}_{2}$ であ る。

本事業の実施にあたつては，建設機械 の不要なアイドリングを中止するととも に，作業効率や機械の燃料消費率の向上 に努める等の環境の保全のための措置を講ずることにより，温室効果ガス排出量 の低減に努める。

